
< 
O 

NATIONAL ADVISORY COMMITTEE 

FOR AERONAUTICS 

TECHNICAL NOTE 1895 

EFFECT OF ASPECT RATIO ON UNDAMPED TQRSIONAL 

OSCILLATIONS OF A THIN RECTANGULAR 

WTNG IN SUPERSONIC FLOW 

By Charles E. Watkins 

Langley Aeronautical Laboratory 
Langley Air Force Base, Va. 

Reproduced From 
Best Available Copy 

Washington 

June 1949 

DISTRfBUTfÖtö STAt 6M&i 
Approved for Public Release 

Distribution Unlimited 

DTiC QUALITY OKEPBCTED 4 



NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE 1895 

EFFECT OF ASPECT RATIO ON UNDAMPED TORSIONAL 

OSCILLATIONS OF A THIN RECTANGULAR 

WING IN SUPERSONIC FLOW 

By Charles E. Watkins 

SUMMARY 

The theory for single-degree torsional instability of a two- 
dimensional wing oscillating in a supersonic stream is extended so as 
to apply-to a finite rectangular wing oscillating in a supersonic stream. 
The velocity potential and aerodynamic—torsional-moment coefficient 
"based on the linearized equations of motion for small disturbances are 
derived "by means of appropriate distributions of moving sources and 
doublets. The aerodynamic-torsional-moment coefficient thus derived is 
combined with a mechanical-damping coefficient to study the effect of 
aspect ratio on the undamped torsional oscillations of a finite rec- 
tangular wing. Decreasing the aspect ratio of the wing is found to 
have a highly stabilizing effect on the undamped torsional oscillations. 
Results of some selected calculations are presented in several figures. 

It is pointed out that second-order thickness effects may be of 
significance. 

INTRODUCTION 

In theoretical studies of an oscillating wing in two-dimensional 
supersonic flow Possio noted, reference 1, that under certain conditions 
a single-degree torsional instability is possible. This instability, 
also sometimes known as a type of "single-degree flutter," was briefly 
discussed by Temple and Jahn in reference 2 and has since been further 
investigated by Garrick and Rubinow in reference 3, by W. P. Jones in 
reference k,  and by Cheilek and Frissel in reference 5. 

It is pointed out in reference 3 that this single-degree flutter 
is due to the wing being negatively damped in torsion and that the 
negative damping is associated with a change in sign of the torsional- 
damping coefficient; furthermore, in the two-dimensional case the 
instability may take place in a low supersonic Mach number 
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range (l <^Mach number <^ /2„5), at low values of the frequency parameter, 
and for axis-of-rotation locations forward of a point two-thirds of the 
chord distance from the leading edge- This phenomenon may he of 
particular importance in connection with high-speed airplanes that are 
flown in (or through) the range of low supersonic Mach numbers at which 
the phenomenon may take place. Although in general discussions this 
phenomenon is usually associated with the word "wing" the theory applies 
as well to an aileron when the aileron is considered as a separate 
degree of freedom. Hereafter in this discussion the word "wing" may 
generally he given the "broader interpretation of "wing or aileron." 

The purpose of the present paper is to extend the theoretical 
investigation of the single-degree torsional instability of a wing 
oscillating in two-dimensional supersonic flow., as presented in 
reference 3, to a finite rectangular wing and to determine the effect 
of aspect ratio on the undamped torsional oscillations of such a wing. 
It is assumed that the negative damping phenomenon in three-dimensional 
flow, like that in two-dimensional flow, is determined mainly by low- 
order terms of a low frequency and that only the effect of the first 
power of the frequency must be considered to get a good approximation 
of its total effect. 

In order to obtain the three-dimensional velocity potential and 
aerodynamic-damping coefficient the method suggested by Garrick and 
Rubinow in reference 6, which is briefly discussed in subsequent 
paragraphs, is applied to a thin, flat, rectangular wing performing 
slow, sinusoidal, torsional oscillations in a supersonic stream. The 
particular wing treated is such that the Mach cones emanating from the 
foremost point of each tip do not intersect the opposite tip ahead of 
the trailing edge of the wing» 

The procedure developed herein may be readily extended to apply to 
any plan form with supersonic trailing edge as long as other edges that 
might be in the regions of mixed supersonic flow are continuously straight. 
What might be a more desirable extension would be to obtain the non- 
linear effect that thickness might have on the undamped torsional oscil- 
lations of a given plan form. 

In reference 6, Garrick and Eubinow make use of the theory of small 
perturbations to investigate the air forces on a thin finite wing 
oscillating in a supersonic stream. For convenience the boundary—value 
problems for the velocity potential for a three-dimensional surface 
(finite wing) moving at supersonic speed are classified into two types 
and referred to as "purely supersonic" and "mixed supersonic." The 
purely supersonic boundary-value problem refers to regions of flow 
where no interaction between the flow on the upper and lower surfaces is 
present. In this case the surfaces can be treated separately and the 
boundary—value problem for each surface can be satisfied by source and 
sink distributions. The source and sink distributions for each surface 
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are known functions of the plan form and profile of the wing. Conse- 
quently, the velocity potentials in the purely supersonic region can 
always he expressed in the form of surface integrals with known 
integrands - 

The mixed—supersonic "boundary—value problem refers to regions where 
interaction between the flow on the upper and lower surfaces is present. 
This problem cannot be solved by a distribution of sources alone over 
the wing surface but in general can be satisfied by use of doublet 
distributions» The manner in which the doublets are to be distributed 
(or the distribution function) depends on the camber of the wing and on 
the plan form of the region of the wing where interaction between the 
flow on the upper and lower surfaces is present. In order to find a 
required distribution function it is usually possible to make use of the 
given boundary conditions and express the distribution function as the 
unknown function in an integral equation. 

It may be appropriate to mention that Eward, reference "J,  has 
recently developed, by consideration of a source distribution over the 
entire upwash field, a time-dependent velocity potential that may be 
applied to certain edge problems. In reference 8 Harmon made use of 
this development to derive some stability derivatives for thin 
rectangular wings at supersonic speeds. The velocity potential derived 
herein for the slowly oscillating case can be shown to bear a relation- 
ship to the sum of three potentials employed by Harmon, namely those 
due to (l) constant vertical motion, (2) accelerated vertical motion, 
and (3) pitching motion. 

SYMBOLS 

jÖ disturbance—velocity potential 

/Ö-, potential function of a moving source defined in 
equation (7) 

$p potential function of a moving doublet defined in 
equation (l6) 

fi-nr potential function due to distribution of sources in 
region N of figure 1 

0 potential function due to distribution of doublets in 
region T of figure 1 

x, y, z      rectangular coordinates attached to wing moving in nega- 
tive x-direction 
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Zm function defining mean ordinates of any chordwise section 
of wing such as at y = y1 as shown in figure 1 

w(x,y ,t)      vertical velocity at surface of wing along chordwise 

section at y = y^ (f-r^J   ] 

|, 7}        rectangular coordinates used to represent space location 
of sources or doublets in the xy—plane 

x0 abscissa of axis of rotation of wing (elastic axis) as 
shown in figure 1 

t time 

a angle of attack 

ä time derivative of a 

V velocity of main stream 

c velocity of sound 

M free—stream Mach number (V/c) 

{v2 
ß = yu  - 1 

T )  T 3  7) )  T] functions defined with equation (7) 

W(g,T))       function used to represent space variation of source and 
doublet strengths 

w(t - T-,) functions used to represent time variation of source and 
w(t — T ) [      doublet strengths 

CD angular frequency 

b one—half cord 

h one—half span 

aspect ratio ( — 
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F(|JT])J f(|,T)) functions used to denote doublet distributions 

p density 

p pressure difference, measured positive downwards, defined 
in equation (24) 

PJJ/ P        values of p in regions N and T, respectively, of  - 
figure 1 

M aerodynamic moment, defined in equation (25) 

Mq in—phase component of aerodynamic-moment coefficient 
defined in equation (30) 

MK out—of—phase component or (torsional-damping) aerodynamic- 
moment coefficient, defined in equation (31) 

ML' total—torsional-damping coefficient 

g^ mechanical-damping coefficient; Jtg  corresponds to the 

usual logarithmic decrement 

u wing density parameter ( —— 
Ub2 

m mass of wing 

b<% 

r radius of gyration divided ~>JJ    b; 
\*  mb 

I moment of inertia per unit length of wing about elastic 
axis 

k = M 
V 

V 
flutter coefficient 

CD natural angular frequency of torsional vibration about 
elastic axis 



NACA TW 1895 

ANALYSIS 

Consider a thin rectangular wing moying at a constant supersonic 
speed in a chordwise direction normal to its leading edge. In accord- 
ance with linear theory the "boundary—value problem for the velocity 
potential is treated at the plane of the wing. For the portion of the 
wing "between the Mach cones emanating from the foremost point of each 
tip, region N in figure 1(a), the "boundary—value prohlern'involves only 
the purely supersonic flow; and for the portions of the wing within these 
Mach cones, regions T in figure 1(a), the "boundary—value prohlem involves 
the mixed supersonic flow. Thus the solution to the present problem pro- 
poses the use of the two types of "boundary—value problems discussed in 
the introduction. 

Boundary—value problems for velocity potential for a rectangular 
wing.— The differential equation for the propagation of small disturbances 
that must be satisfied by the velocity potential in both regions T 
and N (referred to a uniformly moving coordinate system as shown in 
fig. 1) is (equation 4, reference 6) 

- + Yf)0 = S%> + &> + <£& (!) 
& **r      Ö*2  öy2  öz2 

The boundary conditions that must be satisfied by the velocity potentials 
may be stated as follows:  (a) In regions T and W the flow must at 
all times be tangent to the wing surface and (b) in regions T the pressure 
must fall to zero along the wing tips and remain zero in the portion of 
the Mach cones emanating from the foremost points of the wing tips not 
occupied by the wing.  (As customary with linear boundary conditions the 
effects of thickness and camber are separated.  In particular, in the 
nonstationary case the linear thickness effect is of no significance and 
is not considered here0 The important camber effect is characterized by 
the conditions that the perturbation pressure, the perturbation velocity 
in the free—stream direction, and the perturbation—velocity potential are 
all antisymmetrical with respect to the reference plane, whereas the 
perturbation velocity normal to the reference plane is symmetrical„ 
Accordingly, the boundary condition of zero pressure in the side wake may 
be stated as zero perturbation velocity in the free—stream direction.  In 
viev of these antisymmetric characteristics it is only necessary to derive 
the perturbation—velocity potentials for either the upper or lower surface 
of the wing. The upper surface is chosen for the derivations herein.) 

With the boundary conditions stated as in the preceding paragraph, 
the difference in the two types of boundary—value problems involved 
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is in the additional conditions stipulated in condition (b) that must 
be satisfied in region To 

The condition of tangential flow may "be expressed analytically as 

'z=0 

where Zm is the function defining the mean ordinates at any chordwise 

section of the wing» For the particular case of the wing performing 
small sinusoidal oscillations of maximum amplitude aQ about the span- 

wise axis x = x0, the equation for Z^ may be written as (see fig. 1(b)) 

z
m = a(*-*o) = Vtot(*-*o) (3) 

Substituting this expression for Zm into equation (2) gives for this 

case 

v(x,t) = Va + d(x - xQ) (4) 

Equation (4) indicates that the vertical motion of a wing moving for- 
ward and at the same time performing sinusoidal oscillations about a 
spanwise axis is equivalent to the superposition of the vertical motion 
of two similar wings moving forward., one at an instantaneous angle of 
attack and the other rotating about the spanwise axis x = x~ at an 

instantaneous rate of rotation» Since the differential equation (1) 
is linear,, the velocity potential satisfying equations (l) and (4) may 
be considered as the sum of two potentials: the first corresponding 
to the first term of the right—hand side of equation (4) which 
hereinafter is denoted by J#  and the second corresponding to the 

second term of the right—hand side of equation (4) which hereinafter 
is denoted by 0^„ The symbolic forms of the velocity potentials for 
the regions N and T may therefore be written as 

0=0+0. (5) 
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and 

0T = 0Ta + ^ (6) 

Derivation of fi  .- Reference 6 shows that the "boundary-value 

problems for unsteady motion in the purely supersonic region (region N) 
may "be satisfied "by distributions of moving sources. The potential at 
any point (x,j,z)  due to a moving source of strength w(t)J, varying only 
with time., located at point (I^T^O) is given in equation (7a) of refer- 
ence 6. In the present notation the expression for this potential may 
"be written as 

h. ^-Tl)^(t-Tg) (T) 

"1 - ii)(i2 -1) 

whsre 

T, _ M(x - 1 ) 

cß2 

_ M(x - 1 )  + 

cß2 

V(n - ^) (^ - -1) 
1 ßc 

To \An - ^lK^ - ")) 
d 

ßc 

\ -y--ß ^ -|)
2-ß2z2 

Tig = y + l    VG" - 1)2 - ß2z2 
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The integral form of the velocity potential at any point (x,y,z)  due to 
a distribution of such sources over the | TJ—plane is 

0(W,t)=-ii- 
TZ-ßZ  pT]2 

¥(|,il)0i in d| (8) 

where W(|,T}) represents the space variation of source strength. 

The limits r\      and TU are the intersections of the | Tf-plane 

and the upstream-opening Mach cone with vertex, at point (x,j,z).     Thus 
the velocity potential at point (x,j,z)  is affected only by the sources 
in the IT)—plane that are within this Mach cone.  (See fig. 2(a) for 
the limiting case z = 0.) 

lme In order to obtain    jZL      for an oscillating flat wing,   the t 

variation of  source  strength    w(t)   is defined as follows: 

w(t)   = eiüit 

This form for w(t) gives for the numerator of equation (7) 

/j_ -r   \ /j.  *- \   iüo(t—Ti)  io)(t—Tp) 
w(t -Ti) + w(t -T2) = e       + e 

.  T2+Tl 

2ei<ut e 2      cos    CD 
2 ~ Tl (9) 

2 

The space variation of source strength is defined as 

W(|,Tj) = -Vco0 (10) 
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If the expressions given in equations (9) and (10) are substituted into 
equation (Ö) and z is. made zero, the following equation for the velocity 

potential on the upper surface of the wing, with a = a0e
iüyb, is obtained: 

ioM,  „» 

The integrations indicated in equation (ll) can he carried out in 
the form of a series of Bessel functions as in reference 3; however, this 
is not required here since, as is pointed out in the introduction, only the 
first^rder effects of the frequency en are necessary in the present 
discussion. The terms involving higher powers of the frequency can he 
deleted by expanding the integrand of equation (ll) into a power series 
in ca    and dropping the terms involving this parameter to powers higher 
than the first. When this expansion is made, the indicated integration 
in equation (11) can be carried out in closed form. There is obtained 

,1 p r ^f*-» fW*^ & „,„. 

^ -*i)C \ 

Va x - ML x2) 
2ß2c 

Vaoe        / luM x - -^- X21 
2ß2c 

or,   if the  out-of-phase component     ioux    is  denoted by    ä, 

d     ~ Va.          VaM      p .     , 
ffla ß-x x- (12) 

2ß3c 

Note that even though the expression for $m    in equation (12) does 

not contain the integrated effects of higher-order terms in a>, it remains 
sinusoidal with respect to time. 
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In order to obtain ^^ it is only necessary to change the definition 

of W(|,t])  in equation (10).  In this case 

W(£,i)) = IOäQU-XQ) (13) 

Substituting the expressions from equations (9) and (13) into equation (8) 
and letting z approach zero yields 

ioM,     „•> 

fe = ~ l         v    y  % as   (ii+) 

which, after expansion to first power of CD, yields 

luM •x nn2 (|-x0)r.^|(x- 1) 

fe-^fl   I       ,^4^=7—^ 
^~-\)(^-^) 

or 

0Wa = |ga x(x - 2x0) 

= A (I2 _ 2^) (15) 

Equations (12) and (15) may "be substituted into equation (5) to obtain the 
complete expression for 0^ at the upper surface of the wing. 

Derivation of 0 .- As pointed out in the introduction, distributions 

of doublets may be used to satisfy the boundary-value problem in the region of 
mixed supersonic flow (region T). The type of doublet required is that with 
axis normal to the reference plane. It will be recalled that the potential 
of such a doublet may be obtained from the potential of a source, located 
in the reference plane, by a partial differentiation of the source 
potential with respect to the direction normal to the reference plane. 
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If such a differentiation is applied to the potential of a moving source 
in the £TJ—plane (equation (7)),  the following expression that may he shown 
to satisfy equation (l) is ohtained: 

^-k w(i,T)) 
w(t - Ti) + w(t - T2) 

(16) 

where now W(|jT]) refers to douhlet strength. 

In order to ohtain 0Ta for the oscillating flat wing it is convenient 

to assign to the functions w(t - Ti) + w(t - TP) and- ^(l^) the 
expressions given in equation (9) and equation (10),  respectively. 
Substituting these expressions into equation (l6) gives 

**'h 
^§U-I) 

e cß£ cos 

-2Va 
ffyfT^fc-i) 

,/(» - ii)(i2 - 1) 

= -&Ta$rze 2_ cß< 
(x-i) 60 Sln ßc"^" " ^X^ " ") 

< 

ß^^-^^-n) 

(-- \)(^ --)]3/s , 
(17) 
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Expanding the terms involving o> in equation (17) into a power series 
to the first order of m    gives 

iocM 

0p ~ -2Vaß2z 

l-3fl|(x-|) 
cß^  

> - \)(\ - *») 
3/2 

= -2Vß2z< £_MJuc\ 
S,       cßV 

Ma 

|Ö> " M(^ " ")] Cß     l"-"!^-")] 3/2 

(18) 

Each of the two terms within the traces in equation (l8) can he shown to 
satisfy equation (l) to the first order of ao. Furthermore it can he seen 
that, to the first order of <x>,  the potential of a moving doublet may he 
considered as a superposition of two doublets of the stationary type; one 

of strength proportional to a — ^£2ü and the other of strength proportional 
cß2 

to MSL_£. 
P 

The potential 0Ta composed of distributions of doublets of the typos 

in equation (l8) may he written 

(*Ta - .-=»   - - ft Moac* 

cß2> 

F1(^T1)dTl   d-l 

I* - \){\ - *o] 3/2 

_ YzMä 
cß« 

IF2(|,T|)CLTI dg 

3/2 
(19) 
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where the integration is to "be extended over the wing surface S included 
in the fore cons with vertex at (x,y,z) (see fig. 2(b) for the limiting 
case z = 0) and where Fj_ and F2 are functions describing the manner in 
which the doublets are to be distributed in the region S and must be deter- 
mined in such a manner that the boundary conditions (a) and (b) will be 
satisfied. 

The normal procedure of determining F-|_ and F2 would be to formulate 

an integral equation by imposing the boundary conditions on equation (19); 
however, this procedure is tedious and difficult. It can be circumvented 
here by making use of known solutions to similar problems. The integrand 
of the first integral in equation (19) is recognized to be the same as that 
in the integral form of the velocity potential for a similar wing at constant 
angle of attack, and the integrand of the second integral is recognized to 
be the same as that in the integral form of the velocity potential for a 
similar wing undergoing a constant rotation about its leading edge. 
Furthermore, the boundary conditions for these cases can be stated precisely 
as conditions (a) and (b), stated herein, for the oscillating wing. The 
distribution function and the velocity potential at the wing surface for 
the rectangular wing at constant angle of attack can be readily obtained 
from the known distribution of lift for this case. The distribution 
function and velocity potential at the wing surface for the rectangular 
wing undergoing a constant rotation about its leading edge can be obtained 
from the wing at constant angle of attack by linear superposition. The 
distribution functions and velocity potentials at the wing surface for 
both these cases are derived in the appendix. The value of 0 rTa 
(equation 19) at the wing surface can be easily deduced from these results; 
that is, 

0Ta(x>y;t) 21 (a Max' 

cß2> 
l/ßy(x - ßy) + x sin"1 [M. 

VMa 

cß3rt 

^ ~ 2ßy \/ßy(x - ßy) + x2 sin-1./^ 
3 V x 
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27a 
ßrt 

\/ßy(x - ßy) + x sin"1  ^^ 

M2ä 

3*ßJ  L 

(x + 2ßy) \/ßy(x - ßy) + 3x2sin 1   yJBz (20) 

In order to obtain 0T(^ it is convenient to define W(|^) as in 

equation (13). Substituting equations (9) and (13) into equation (16) 
yields 

loM,       ^ 

C*o        5 

_                   e ^ " 0« § ^(r, - „^ - ,) 
92   ~  — 

dz 
2a(,£  - ^Q)                          .  (21) 

Carrying out the indicated differentiation and expanding to the first 
power of üü results in 

jÖp = -2ß^za I  - *() 

[(11 - ^2 - n) 
3/2 

Z' 

2ß2zä 

"\ 

I 

f»-^(i2-i)| 
3/2 (n-^^-n) 3/2 

>        (22) 

V 

The two expressions in the right side of equation (22) have the same form 
as the expressions in the right side of equation (l8). The following 
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integral expression for 0^ is therefore of the same form as the 

integral expression for 0Ta (equation 19) and the functions F-. 

and F^ can be determined by the procedure giren for determining F-, 
and F2: 

0Ta = 
ßzdxQ F3(g,Ti)dg dT) 

[(" - \)(\ - ^3 
- _ ßza 

7] 3/2        jt 

5F^(i,Tj)cL6 dti 

fc-^(\-*J\ 3/2 

The expression for 0T(^ at the wing surface can therefore be deduced from 

the results in the appendix to be 

"Td 
2<XXQ 

\/ßy(x - ßy) + x sin-1 »fiz 

2a 

ß« 
^-^ V&ÖTT^j + ^ sin-i JS 

a 
ßn 

5x - 2ßy - 6XQ 

3 
j/ßy(x - ßy) + x/x - 2xo)   sin-1 ^£ 

(23) 

Equations (20) and (23) may be substituted into equation (6) to obtain 0p 
at the wing surface. 

Aerodynamic moment.- The local pressure difference between the upper 
and lower surfaces may be written as 

--I-I, (210 
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The aerodynamic moment on the entire wing about the axis x = XQ, measured 

in the positive clockwise direction, is then (see fig. 1) 

^ = 2 Mi- X^PN dy dx + 2  / / (x - x^ pp dy dx   (25) 

If all linear dimensions involved in equations (2^) and (25) are referred 
to the chord 2b, these equations become, in a sense, nondimensional and 
can be written 

and 

p = _2p(M + X M\ , (26) 
Vot  2b öx/ 

1^ = I6b3  / / (x - XQW dy dx + I6b3  / / (x - x^pp dy dx 

(27) 

Putting in the appropriate limits of integration (see fig. 2) results in 
the following equation for the total aerodynamic moment: 

Ma = l6b3 J0 J   (X " Xo)% '**  ^ + l6t3 J0  J0        (X " Xo) PT ^ ta 
(28)- 

If the nondimensional forms of    p      and    p      are computed from 

equations  (12),   (15),   (20),  and (23)  and substituted into equation (28), 
there  is obtained a complex expression for    lY^    that may be written as 

MQ, = Spbh^akfa + IMA (29) 
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where 

M„ = 
3ß2k2 L 

3ß(l-2xo) -I (2-3xo) (30) 

is the in-phase component of the aerodynamic-moment coefficient, and 

M4 
3ß\ 

»3(l - 3X0 + 3*o
2) - p(2 - 3^ _

2ß%(3xn-2)+(S-3) 

(3D 

is the out-of—phase or torsional-damping aerodynamic-moment coefficient. 

The expression for M^ in equation (31) represents the central result 

of the present investigation because the conditions of torsional stability 
or instability depend directly on the sign and magnitude of M^. It -will 

"be noted, in equation (31), that M^ may undergo changes in sign as any 
one of the parameters ß, xQ, and A is varied. 

Although equation (31) has been derived for the condition that the 
intersection of the Mach cones from the foremost points of the side edges 
is off the wing, it can be shown that it remains valid as long as the Mach 
cone from one side edge does not intersect the opposite side edge. When a 
side edge is intersected by the Mach cone from the opposite edge different 
velocity potentials from those explicitly derived herein are required for 
portions of the wing behind the points where the Mach cone intersects the 
edge. The derivation of these potentials is not considered here. 

Total torsional-damping coefficient and some selected calculations of 
stability conditions.- If mechanical damping is assumed to exist about the 
axis of rotation, for example as the hinge friction in an aileron instal- 
lation, and if this damping is converted to coefficient form as in 
references 3 and 9 and combined with the aerodynamic damping, the total 
torsional-damping coefficient may be written as 

V = %(ß,Xo,k,A) + nr, fffi a 
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or 

*V = M^ß,.3o,k,A) + -i ^a\—)  §a (32) 

Negative values of M^1  indicate dynamic instability that may 

correspond to single-degree torsional flutter. Positive values of M. ' 

indicate stable conditions and between the stable and unstable conditions, 
that is when Mj,' vanishes, a borderline state of unstable equilibrium 

separating damped and undamped torsional oscillations occurs. Since the 
term involving ^ in equation (32) is always positive, negative values 

of M^? and the vanishing of M^1 are associated with negative values 

only of Mi,, (equation (31)). 

With the exception of aspect ratio A, the effects of the individual 
parameters in equation (32) are presented in references 3 and h.    The 
effect of aspect ratio for some particular values of the other parameters 
is briefly discussed in the following paragraphs. 

The range of values of XQ and ß2 (and M2) for which M^' vanishes 

when g^ is assumed to be zero and A has different selected values is 

shown plotted in figure 3. The regions inside the different curves give 
the range of values of XQ, ß2, and M2 in which instability might occur. 

The curve for infinite aspect ratio agrees with that given in figure 21 of 
reference 3 and that given in figure 2 of reference k.    It will be noted 
that decreasing the aspect ratio has a highly stabilizing effect. 

The dashed portions of the curves in figure 3 correspond to aspect 
ratio and Mach number combinations that cause the Mach cone from the 
foremost point of one tip to intersect the opposite tip ahead of the 
trailing edge. 

In figure k  the quantity M^ multiplied, for convenience, by 3ß4k is 

plotted as a function of M2 for the values of A selected in figure 3- 
The ordinates of these curves are proportional to the amount of negative 
aerodynamic damping available for given Mach numbers and for given values 
of the frequency parameter k. . The stabilizing effect of decreasing aspect 
ratio is apparent in this figure. 

Corresponding values of the flutter—speed coefficient V/bo^ and 

aspect ratio A for which M. '  vanishes for some selected values of the 

parameters xQ,  go,, M2,  u, p and ra
2 are plotted in figure 5. 
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The regions above these curves give the range of values in which insta- 
bilities might occuro 

It should he recalled that thickness effects have not been considered 
in the present discussion. Second-order thickness effects may be of 
considerable significance in regard to undamped torsional oscillations of 
-wings of finite or infinite aspect ratio. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, la,.,  March 2$>,  19^9 
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APPENDIX 

VELOCITY POTENTIALS FOE TIP REGION OF RECTANGULAR 

WING IN STEADY SUPERSONIC FLOW 

It can be shown, as in reference 10, that at points in the xy—plane 
the perturbation-Telocity potential in a supersonic stream due to doublets 
in the xy-plane distributed according to a distribution function f(|,T|) 
is proportional to the distribution function; that is, 

0(x,y,O) = 11m      ' ' 
z-*)  *   J (J3 £x _ 6)2 _ ß2(y _ „J2 _ ß2z2l3/2 

i*f(x,y) (Al) 

where the positive sign applies to the upper surface of the region S and 
the negative sign applies to the lower surface; that is, the direction from 
which z -» 0. When the appropriate distribution function can be found, such 
doublet distributions can be teed to satisfy boundary-value problems, in the 
xy—plane, for vanishingly thin airfoils at vanishingly small angles of 
attack.  In the case of a rectangular wing placed in a supersonic stream 
flowing from the negative x—direction, with its leading edge normal to the 
free—stream direction, the added velocity in the free—stream direction in 
the tip region can be obtained from the expression derived for the added 
pressure difference, in this region, in reference 11. In the present 
notation.this expression for pressure difference is 

2pY M , Ü2e£ aln-i  /IF 
dx Bit V x 

or 

M = 2 ^ Bln-1  v/& (A2) 
dx ßit V x 
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If 0 is eliminated from equations (Al) and (A2), the following differ- 
ential equation for f(x,y) is obtained: 

df  2Ya . _i föf ,  % « — =  sin -1- v ZL (Ao\ 
ÖX  ß«      Vi WJ 

The expression for *f(x,y) or 0(Xjy) can now "be obtained by a partial 
integration, with respect to x, of equation (A3). This integration gives 

*f(x,y) = 0(x,y) = ^ Jßy(X- ßy)+ x sin"
1 y^ä       (AU) 

For the rectangular wing rotating about its leading edge the 
distribution function for the tip region can be obtained by a linear 
superposition of the function given in (Ak);  that is, 

-«r^-sto«2va 
/o ßrt J      <\/ßyßx-|) _ßy]   + (x_6)  sin-1   /2ZI L| 

§   p~^   \Mx - ßy) + x2 sin-1  ^ (A5) 

If in equation (A4) a is replaced by a _ ^| and If in equation (A5) 

Mx eß 

a is replaced by —-, the sum of the resulting equations will yield 
cß 

equation (20) of the text. Similarly., if In equation (Ak)    Va Is 
replaced by -XQCC and if in equation (A5) Va is replaced by a, the 

sum of the resulting equations will yield equation (23) of the text. 
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(a) Plan form (xy-plane) 

<- 

(b) Section y = y,  (xz-plane). 

Figure 1.- Sketch illustrating chosen coordinate system 
of airfoil oscillating in torsion. 
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A 

(a) Purely supersonic region. 

1/ x^ 

(b) Mixed supersonic region. 

Figure 2.- Sketch illustrating areas of integration for "purely supersonic" 
and "mixed supersonic" regions of flow. 
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-1.8 

-1.6 

1.0 1. 2 lA 

H2 

x0 = .0 2. (a) 

Figure ^.- Curves showing the variation of 
negative aerodynamic torsional damping 
with M  for selected values of A 
and XQ. 
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Figure M-.-  Concluded. 
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